24 research outputs found

    A Low-Cost Wireless Body Area Network for Human Activity Recognition in Healthy Life and Medical Applications

    Get PDF
    Moved by the necessity, also related to the ongoing COVID-19 pandemic, of the design of innovative solutions in the context of digital health, and digital medicine, Wireless Body Area Networks (WBANs) are more and more emerging as a central system for the implementation of solutions for well-being and healthcare. In fact, by elaborating the data collected by a WBAN, advanced classification models can accurately extract health-related parameters, thus allowing, as examples, the implementations of applications for fitness tracking, monitoring of vital signs, diagnosis, and analysis of the evolution of diseases, and, in general, monitoring of human activities and behaviours. Unfortunately, commercially available WBANs present some technological and economic drawbacks from the point of view, respectively, of data fusion and labelling, and cost of the adopted devices. To overcome existing issues, in this paper, we present the architecture of a low-cost WBAN, which is built upon accessible off-the-shelf wearable devices and an Android application. Then, we report its technical evaluation concerning resource consumption. Finally, we demonstrate its versatility and accuracy in both medical and well-being application scenarios.publishedVersio

    An IoT based Virtual Coaching System (VSC) for Assisting Activities of Daily Life

    Get PDF
    Nowadays aging of the population is becoming one of the main concerns of theworld. It is estimated that the number of people aged over 65 will increase from 461million to 2 billion in 2050. This substantial increment in the elderly population willhave significant consequences in the social and health care system. Therefore, in thecontext of Ambient Intelligence (AmI), the Ambient Assisted Living (AAL) has beenemerging as a new research area to address problems related to the aging of the population. AAL technologies based on embedded devices have demonstrated to be effectivein alleviating the social- and health-care issues related to the continuous growing of theaverage age of the population. Many smart applications, devices and systems have beendeveloped to monitor the health status of elderly, substitute them in the accomplishment of activities of the daily life (especially in presence of some impairment or disability),alert their caregivers in case of necessity and help them in recognizing risky situations.Such assistive technologies basically rely on the communication and interaction be-tween body sensors, smart environments and smart devices. However, in such contextless effort has been spent in designing smart solutions for empowering and supportingthe self-efficacy of people with neurodegenerative diseases and elderly in general. Thisthesis fills in the gap by presenting a low-cost, non intrusive, and ubiquitous VirtualCoaching System (VCS) to support people in the acquisition of new behaviors (e.g.,taking pills, drinking water, finding the right key, avoiding motor blocks) necessary tocope with needs derived from a change in their health status and a degradation of theircognitive capabilities as they age. VCS is based on the concept of extended mind intro-duced by Clark and Chalmers in 1998. They proposed the idea that objects within theenvironment function as a part of the mind. In my revisiting of the concept of extendedmind, the VCS is composed of a set of smart objects that exploit the Internet of Things(IoT) technology and machine learning-based algorithms, in order to identify the needsof the users and react accordingly. In particular, the system exploits smart tags to trans-form objects commonly used by people (e.g., pillbox, bottle of water, keys) into smartobjects, it monitors their usage according to their needs, and it incrementally guidesthem in the acquisition of new behaviors related to their needs. To implement VCS, thisthesis explores different research directions and challenges. First of all, it addresses thedefinition of a ubiquitous, non-invasive and low-cost indoor monitoring architecture byexploiting the IoT paradigm. Secondly, it deals with the necessity of developing solu-tions for implementing coaching actions and consequently monitoring human activitiesby analyzing the interaction between people and smart objects. Finally, it focuses on the design of low-cost localization systems for indoor environment, since knowing theposition of a person provides VCS with essential information to acquire information onperformed activities and to prevent risky situations. In the end, the outcomes of theseresearch directions have been integrated into a healthcare application scenario to imple-ment a wearable system that prevents freezing of gait in people affected by Parkinson\u2019sDisease

    B-HAR: an open-source baseline framework for in depth study of human activity recognition datasets and workflows

    Full text link
    Human Activity Recognition (HAR), based on machine and deep learning algorithms is considered one of the most promising technologies to monitor professional and daily life activities for different categories of people (e.g., athletes, elderly, kids, employers) in order to provide a variety of services related, for example to well-being, empowering of technical performances, prevention of risky situation, and educational purposes. However, the analysis of the effectiveness and the efficiency of HAR methodologies suffers from the lack of a standard workflow, which might represent the baseline for the estimation of the quality of the developed pattern recognition models. This makes the comparison among different approaches a challenging task. In addition, researchers can make mistakes that, when not detected, definitely affect the achieved results. To mitigate such issues, this paper proposes an open-source automatic and highly configurable framework, named B-HAR, for the definition, standardization, and development of a baseline framework in order to evaluate and compare HAR methodologies. It implements the most popular data processing methods for data preparation and the most commonly used machine and deep learning pattern recognition models.Comment: 9 Pages, 3 Figures, 3 Tables, Link to B-HAR Library: https://github.com/B-HAR-HumanActivityRecognition/B-HA

    onto plc an ontology driven methodology for converting plc industrial plants to iot

    Get PDF
    Abstract We present the new methodology ONTO-PLC to deliver software programs on system-on-chip or single-board computers used to control industrial plants, as substitutes for programmable logic control technologies. The methodology is ontology-driven based on the abstract description of the plant at a level in which the plant itself is viewed as a set of instruments, each instrument being a set of machineries coordinated in functional terms by a control system, formed by sensors and actuators, under the control of an abstract model of behavior delivered by means of an extended finite state machine

    SHPIA 2.0: An Easily Scalable, Low-Cost, Multi-purpose Smart Home Platform for Intelligent Applications

    Get PDF
    Sensors, electronic devices, and smart systems have invaded the market and our daily lives. As a result, their utility in smart home contexts to improve the quality of life, especially for the elderly and people with special needs, is getting stronger and stronger. Therefore, many systems based on smart applications and intelligent devices have been developed, for example, to monitor people’s environmental contexts, help in daily-life activities, and analyze their health status. However, most existing solutions have drawbacks related to accessibility and usability. They tend to be expensive and lack generality and interoperability. These solutions are not easily scalable and are typically designed for specific constrained scenarios. This paper tackles such drawbacks by presenting SHPIA 2.0, an easily scalable, low-cost, multi-purpose smart home platform for intelligent applications. It leverages low-cost Bluetooth Low Energy (BLE) devices featuring both BLE connected and BLE broadcast modes, to transform common objects of daily life into smart objects. Moreover, SHPIA 2.0 allows the col- lection and automatic labeling of different data types to provide indoor monitoring and assistance. Specifically, SHPIA 2.0 is designed to be adaptable to different home-based application scenarios, including human activity recognition, coaching systems, and occupancy detection and counting. The SHPIA platform is open source and freely available to the scientific community, fostering collaboration and innovation

    Towards a wearable system for predicting the freezing of gait in people affected by Parkinson's disease

    Get PDF
    Some wearable solutions exploiting on-body acceleration sensors have been proposed to recognize Freezing of Gait (FoG) in people affected by Parkinson Disease (PD). Once a FoG event is detected, these systems generate a sequence of rhythmic stimuli to allow the patient restarting the march. While these solutions are effective in detecting FoG events, they are unable to predict FoG to prevent its occurrence. This paper fills in the gap by presenting a machine learning-based approach that classifies accelerometer data from PD patients, recognizing a pre-FOG phase to further anticipate FoG occurrence in advance. Gait was monitored by three tri-axial accelerometer sensors worn on the back, hip and ankle. Gait features were then extracted from the accelerometer's raw data through data windowing and non-linear dimensionality reduction. A k-nearest neighbor algorithm (k-NN) was used to classify gait in three classes of events: pre-FoG, no-FoG and FoG. The accuracy of the proposed solution was compared to state of-the-art approaches. Our study showed that: (i) we achieved performances overcoming the state-of-the-art approaches in terms of FoG detection, (ii) we were able, for the very first time in the literature, to predict FoG by identifying the pre-FoG events with an average sensitivity and specificity of, respectively, 94.1% and 97.1%, and (iii) our algorithm can be executed on resource-constrained devices. Future applications include the implementation on a mobile device, and the administration of rhythmic stimuli by a wearable device to help the patient overcome the FoG

    Joint Distribution and Transitions of Pain and Activity in Critically Ill Patients

    Full text link
    Pain and physical function are both essential indices of recovery in critically ill patients in the Intensive Care Units (ICU). Simultaneous monitoring of pain intensity and patient activity can be important for determining which analgesic interventions can optimize mobility and function, while minimizing opioid harm. Nonetheless, so far, our knowledge of the relation between pain and activity has been limited to manual and sporadic activity assessments. In recent years, wearable devices equipped with 3-axis accelerometers have been used in many domains to provide a continuous and automated measure of mobility and physical activity. In this study, we collected activity intensity data from 57 ICU patients, using the Actigraph GT3X device. We also collected relevant clinical information, including nurse assessments of pain intensity, recorded every 1-4 hours. Our results show the joint distribution and state transition of joint activity and pain states in critically ill patients.Comment: Accepted for Publication in EMBC 202

    Human Activity Recognition using Inertial, Physiological and Environmental Sensors: a Comprehensive Survey

    Get PDF
    In the last decade, Human Activity Recognition (HAR) has become a vibrant research area, especially due to the spread of electronic devices such as smartphones, smartwatches and video cameras present in our daily lives. In addition, the advance of deep learning and other machine learning algorithms has allowed researchers to use HAR in various domains including sports, health and well-being applications. For example, HAR is considered as one of the most promising assistive technology tools to support elderly's daily life by monitoring their cognitive and physical function through daily activities. This survey focuses on critical role of machine learning in developing HAR applications based on inertial sensors in conjunction with physiological and environmental sensors.Comment: Accepted for Publication in IEEE Access DOI: 10.1109/ACCESS.2020.303771

    Towards Posture and Gait Evaluation through Wearable-Based Biofeedback Technologies

    Get PDF
    In medicine and sport science, postural evaluation is an essential part of gait and posture correction. There are various instruments for quantifying the postural system’s efficiency and deter- mining postural stability which are considered state-of-the-art. However, such systems present many limitations related to accessibility, economic cost, size, intrusiveness, usability, and time-consuming set-up. To mitigate these limitations, this project aims to verify how wearable devices can be assem- bled and employed to provide feedback to human subjects for gait and posture improvement, which could be applied for sports performance or motor impairment rehabilitation (from neurodegenerative diseases, aging, or injuries). The project is divided into three parts: the first part provides experimen- tal protocols for studying action anticipation and related processes involved in controlling posture and gait based on state-of-the-art instrumentation. The second part provides a biofeedback strategy for these measures concerning the design of a low-cost wearable system. Finally, the third provides al- gorithmic processing of the biofeedback to customize the feedback based on performance conditions, including individual variability. Here, we provide a detailed experimental design that distinguishes significant postural indicators through a conjunct architecture that integrates state-of-the-art postural and gait control instrumentation and a data collection and analysis framework based on low-cost devices and freely accessible machine learning techniques. Preliminary results on 12 subjects showed that the proposed methodology accurately recognized the phases of the defined motor tasks (i.e., rotate, in position, APAs, drop, and recover) with overall F1-scores of 89.6% and 92.4%, respectively, concerning subject-independent and subject-dependent testing setups

    SHPIA: A Low-Cost Multi-purpose Smart Home Platform for Intelligent Applications

    No full text
    Nowadays, smart devices have invaded the market and consequently our daily life. Their use in smart home contexts, to improve the quality of life, specially for elderly and people with special needs, is getting stronger and stronger. Therefore, many systems based on smart applications and intelligent devices have been developed, for example, to monitor people’s environmental contexts, help in daily life activities, and analyze their health status. However, most of the existing solutions present disadvantages regarding accessibility, as they are costly, and applicability, due to lack of generality and interoperability. This paper is intended to tackle such drawbacks by presenting SHPIA, a multi-purpose smart home platform for intelligent applications. It is based on the use of a low-cost Bluetooth Low Energy (BLE)-based devices, which “transforms” objects of daily life into smart objects. The devices allow collecting and automatically labelling different type of data to provide indoor monitoring and assistance. SHPIA is intended, in particular, to be adaptable to different home-based application scenarios, like for example, human activity recognition, coaching systems, and occupancy detection and counting. The SHPIA platform is open source and freely available to the scientific and industrial community
    corecore